Stacking of beads into monolayers by flowthrough flat microfluidic chambers

نویسندگان

  • Markus Grumann
  • Patric Schippers
  • Michael Dobmeier
  • Stefan Häberle
  • Andreas Geipel
  • Thilo Brenner
  • Roland Zengerle
  • Jens Ducrée
  • Michael Fritsche
چکیده

This work presents the investigation of hydrodynamic filling of beads into flat microfluidic devices. A periodical hexagonal monolayer as aggregation pattern is favorable for parallel optical detection. Several microfluidic devices for bead-based analyses were designed. Each microfluidic device consists of one inlet channel, one flat aggregation chamber for the beads and several outlet channels. Suspensions of beads with 180 μm in diameter are loaded into a flat chamber measuring 190 μm in depth by a pressure driven flow. With the depth smaller than a bead diameter, the outlets act as barriers to the beads and force them to accumulate in the chamber. Therefore, the decisive impact parameters are the geometry, the particle concentration of suspension, and the inlet pressure. Reproducible filling ratios of more than 94 % have been achieved. We found an optimum filling behavior for a rhombus-like aggregation chamber connected to a single outlet channel at the same width as the chamber. Here, the aperture angle of 60° fosters hexagonal aggregation patterns which leads to the highest package density. The rhombus-like chamber also shows the least rise of the hydrodynamic resistance during filling and the best rinsing behavior which allows to minimize the volume of washing detergents used for an immunoassay. Areas of accumulated beads redistribute the hydrodynamic resistance of the microfluidic device. CFD-simulations, embedded in an iterative master-routine, are carried out to describe the complete process of filling and to assist the process of design optimization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

C0lc00005a 2651..2654

We have developed a multi-layer, microfluidic array platform containing concave microwells and flat cell culture chambers to culture embryonic stem (ES) cells and regulate uniform-sized embryoid body (EB) formation. The main advantage of this platform was that EBs cultured within the concave microwells of a bottom layer were automatically replated into flat cell culture chambers of a top layer,...

متن کامل

Numerical Modeling of the Shear Module of Alginate Micro-Beads under the Ultrasonic Thermal Effect

The mechanical properties of microscopic particles have been a heated research object for it takes the deformation of micro-beads in the microfluidic environment into account. Sufficient knowledge on mechanical properties of micro-beads would lead to better device design and application for cell mechanics, tissue engineering, etc. The physical properties of alginate beads were examined both in ...

متن کامل

An integrated microfluidic processor for single nucleotide polymorphism-based DNA computing.

An integrated microfluidic processor is developed that performs molecular computations using single nucleotide polymorphisms (SNPs) as binary bits. A complete population of fluorescein-labeled DNA "answers" is synthesized containing three distinct polymorphic bases; the identity of each base (A or T) is used to encode the value of a binary bit (TRUE or FALSE). Computation and readout occur by h...

متن کامل

Image-based feedback control for real-time sorting of microspheres in a microfluidic device.

We describe a control system to automatically distribute antibody-functionalized beads to addressable assay chambers within a PDMS microfluidic device. The system used real-time image acquisition and processing to manage the valve states required to sort beads with unit precision. The image processing component of the control system correctly counted the number of beads in 99.81% of images (268...

متن کامل

Microfluidic mixing using contactless dielectrophoresis.

The first experimental evidence of mixing enhancement in a microfluidic system using contactless dielectrophoresis (cDEP) is presented in this work. Pressure-driven flow of deionized water containing 0.5 μm beads was mixed in various chamber geometries by imposing a dielectrophoresis (DEP) force on the beads. In cDEP the electrodes are not in direct contact with the fluid sample but are instead...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003